Further Pure Maths 2

Exercise 4E

1 We have $z_{1}=1+\mathrm{i}, z_{2}=2+\mathrm{i}$ and $z_{3}=2+2 \mathrm{i}$. The transformed triangle can be found by directly computing the transformed values w_{1}, w_{2}, w_{3} of z_{1}, z_{2}, z_{3} :
a i $w=z-3+2 \mathrm{i}$

ii This transformation represents a translation by vector $\binom{-3}{2}$.
b i $\quad w=2 z$

ii This transformation represents enlargement by a factor of 2 with centre $(0,0)$.
c i $\quad w=\mathrm{i} z-2+\mathrm{i}$

ii This transformation represents a rotation anticlockwise through $\frac{\pi}{2}$ and a translation by $\binom{-2}{1}$
d i $w=3 z-2 \mathrm{i}$

Further Pure Maths 2

1 d ii This transformation represents enlargement by a factor of 3 and translation by $\binom{0}{-2}$.
2

Hence $T: w=4(z-2+3 \mathrm{i})$

$$
=4 z-8+12 \mathrm{i}
$$

The transformation T is $w=4 z-8+12 \mathrm{i}$
Note: $a=4, b=-8+12$ i.
3 Rotation through $\frac{\pi}{2}$ around the origin is achieved by multiplying all values in the z-plane by i. Enlargement by a scale factor of 4 is achieved by multiplying all values in the z-plane by 4 .

Therefore this transformation can be written as $w=4 \mathrm{i} z$.

Further Pure Maths 2

$4 z$ moves on a circle $|z-2|=4$
$\operatorname{METHOD}(\mathbf{1}) \quad w=2 z-5+3 \mathrm{i}$

$$
\Rightarrow w+5-3 \mathrm{i}=2 z
$$

$$
\Rightarrow \frac{w+5-3 \mathrm{i}}{2}=z
$$

$$
\Rightarrow \frac{w+5-3 \mathrm{i}}{2}-2=z-2
$$

$$
\Rightarrow \frac{w+5-3 \mathrm{i}-4}{2}=z-2
$$

$$
\Rightarrow \frac{w+1-3 \mathrm{i}}{2}=z-2
$$

$$
\Rightarrow\left|\frac{w+1-3 \mathrm{i}}{2}\right|=|z-2|
$$

$$
\Rightarrow \frac{|w+1-3 \mathrm{i}|}{|2|}=|z-2|
$$

$$
\Rightarrow|w+1-3 \mathrm{i}|=2|z-2|
$$

$$
\Rightarrow|w+1-3 \mathrm{i}|=2(4)
$$

$$
\Rightarrow|w+1-3 \mathrm{i}|=8
$$

$$
\Rightarrow|w-(-1+3 i)|=8
$$

So the locus of w is a circle centre $(-1,3)$, radius 8 with equation $(u+1)^{2}+(v-3)^{2}=64$.

METHOD(2) $|z-2|=4$
z lies on a circle, centre $(2,0)$, radius 4
enlargement scale factor 2 , centre 0 .
$2 z$ lies on a circle, centre $(4,0)$, radius 8 .
translation by a translation vector $\binom{-5}{3}$.
$w=2 z-5+3$ i lies on a circle centre $(-1,3)$, radius 8 .
So the locus of w is a circle, centre $(-1,3)$, radius 8 with equation $(u+1)^{2}+(v-3)^{2}=64$.

Further Pure Maths 2

$5 w=z-1+2 \mathrm{i}$
a $|z-1|=3$ circle centre $(1,0)$ radius 3 .
METHOD (1) $|z-1|=3$ is translated by a translation vector $\binom{-1}{2}$ to give a circle, centre $(0,2)$, radius 3 , in the w-plane.
METHOD (2)

$$
\begin{aligned}
& w=z-1+2 \mathrm{i} \\
& \Rightarrow w-2 \mathrm{i}=z-1 \\
& \Rightarrow|w-2 \mathrm{i}|=|z-1| \\
& \Rightarrow|w-2 \mathrm{i}|=3
\end{aligned}
$$

The locus of w is a circle, centre (0,2), radius 3 .

Further Pure Maths 2

5 b $\arg (z-1+\mathrm{i})=\frac{\pi}{4}$ half-line from $(1,-1)$ at $\frac{\pi}{4}$ with the positive real axis.
$\operatorname{METHOD}(\mathbf{1}) \arg (z-1+\mathrm{i})=\frac{\pi}{4}$ is translated by a translation vector $\binom{-1}{2}$ to give a half-line from $(0,1)$ at $\frac{\pi}{4}$ with the positive real axis.

$$
\begin{array}{ll}
\operatorname{METHOD}(2) & w=z-1+2 \mathrm{i} \\
& \Rightarrow w+1-2 \mathrm{i}=z \\
& \operatorname{So} \arg (z-1+\mathrm{i})=\frac{\pi}{4} \\
& \text { becomes } \arg (w+1-2 \mathrm{i}-1+\mathrm{i})=\frac{\pi}{4} \\
& \Rightarrow \arg (w-\mathrm{i})=\frac{\pi}{4}
\end{array}
$$

Therefore, the locus of w is a half-line from $(0,1)$ at $\frac{\pi}{4}$ with the positive real axis.

c $y=2 x$
$w=z-1+2 \mathrm{i}$
$\Rightarrow z=w+1-2 \mathrm{i}$
$\Rightarrow x+\mathrm{i} y=u+\mathrm{i} v+1-2 \mathrm{i}$
$\Rightarrow x+\mathrm{i} y=u+1+\mathrm{i}(v-2)$

$$
\text { So } \begin{aligned}
y=2 x & \Rightarrow v-2=2(u+1) \\
& \Rightarrow v-2=2 u+2 \\
& \Rightarrow v=2 u+4
\end{aligned}
$$

The locus of w is a line with equation $v=2 u+4$.

Further Pure Maths 2

$6 w=\frac{1}{z}, z \neq 0$
a z lies on a circle, $|z|=2$
$w=\frac{1}{z}$
$\Rightarrow|w|=\left|\frac{1}{z}\right|$
$\Rightarrow|w|=\frac{|1|}{|z|}$
$\Rightarrow|w|=\frac{1}{2} \longleftarrow \quad$ apply $|z|=2$
Therefore the locus of w is a circle, centre $(0,0)$, radius $\frac{1}{2}$, with equation $u^{2}+v^{2}=\frac{1}{4}$.
b z lies on the half- $\operatorname{line}, \arg z=\frac{\pi}{4}$
$w=\frac{1}{z} \Rightarrow w z=1 \Rightarrow z=\frac{1}{w}$
So $\arg z=\frac{\pi}{4}$, becomes $\arg \left(\frac{1}{w}\right)=\frac{\pi}{4}$
$\Rightarrow \arg (1)-\arg (w)=\frac{\pi}{4}$
$\Rightarrow-\arg w=\frac{\pi}{4} \longleftarrow \arg 1=0$
$\Rightarrow \arg w=-\frac{\pi}{4}$
Therefore the locus of w is a half-line from $(0,0)$ at an angle of $-\frac{\pi}{4}$ with the positive x-axis.
The locus of w has equation, $v=-u, u>0, v<0$.

Further Pure Maths 2

6 c z lies on the line $y=2 x+1$
$w=\frac{1}{z} \Rightarrow w z=1 \Rightarrow z=\frac{1}{w}$.
$\Rightarrow x+\mathrm{i} y=\frac{1}{u+\mathrm{i} v}$
$\Rightarrow x+\mathrm{i} y=\frac{1}{(u+\mathrm{i} v)} \frac{(u-\mathrm{i} v)}{(u-\mathrm{i} v)}$
$\Rightarrow x+\mathrm{i} y=\frac{u-\mathrm{i} v}{u^{2}+v^{2}}$
$\Rightarrow x+\mathrm{i} y=\frac{u}{u^{2}+v^{2}}+\mathrm{i}\left(\frac{-v}{u^{2}+v^{2}}\right)$
So $x=\frac{u}{u^{2}+v^{2}}$ and $y=\frac{-v}{u^{2}+v^{2}}$
Hence $y=2 x+1$ becomes $\frac{-v}{u^{2}+v^{2}}=\frac{2 u}{u^{2}+v^{2}}+1 \quad \times\left(u^{2}+v^{2}\right)$

$$
\begin{aligned}
& \Rightarrow-v=2 u+u^{2}+v^{2} \\
& \Rightarrow 0=u^{2}+2 u+v^{2}+v \\
& \Rightarrow(u+1)^{2}-1+\left(v+\frac{1}{2}\right)^{2}-\frac{1}{4}=0 \\
& \Rightarrow(u+1)^{2}+\left(v+\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& \Rightarrow(u+1)^{2}+\left(v+\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{5}}{2}\right)^{2}
\end{aligned}
$$

Therefore, the locus of w is a circle, centre $\left(-1,-\frac{1}{2}\right)$, radius $\frac{\sqrt{5}}{2}$, with equation $(u+1)^{2}+\left(v+\frac{1}{2}\right)^{2}=\frac{5}{4}$
$7 w=z^{2}$
a z moves once round a circle, centre $(0,0)$, radius 3 .
The equation of the circle, $|z|=3$ is also $r=3$.
The equation of the circle can be written as $z=3 \mathrm{e}^{\mathrm{i} \theta}$

$$
\text { or } z=3(\cos \theta+\mathrm{i} \sin \theta)
$$

$$
\begin{aligned}
\Rightarrow w=z^{2} & =(3(\cos \theta+\mathrm{i} \sin \theta))^{2} \\
& =3^{2}(\cos 2 \theta+\mathrm{i} \sin 2 \theta) \\
& =9(\cos 2 \theta+\mathrm{i} \sin 2 \theta)
\end{aligned}
$$

de Moivre's Theorem.

So, $w=9(\cos 2 \theta+\mathrm{i} \sin 2 \theta)$ can be written as $|w|=9$
Hence, as $|w|=9$ and $\arg w=2 \theta$ then w moves twice round a circle, centre $(0,0)$, radius 9 .

Further Pure Maths 2

7 b z lies on the real-axis $\Rightarrow y=0$
So $z=x+\mathrm{i} y$ becomes $z=x($ as $y=0)$
$\Rightarrow w=z^{2}=x^{2}$
$\Rightarrow u+\mathrm{i} v=x^{2}+\mathrm{i}(0)$
$\Rightarrow u=x^{2}$ and $v=0$
As $v=0$ and $u=x^{2} \geqslant 0$ then w lies on the positive real-axis including the origin, 0 .
c z lies on the imaginary axis $\Rightarrow x=0$
So $z=x+\mathrm{i} y$ becomes $z=\mathrm{i} y$ (as $x=0)$
$\Rightarrow w=z^{2}=(\mathrm{i} y)^{2}=-y^{2}$
$\Rightarrow u+\mathrm{i} v=-y^{2}+\mathrm{i}(0)$
$\Rightarrow u=-y^{2}$ and $v=0$
As $v=0$ and $u=-y^{2} \leqslant 0$ then w lies on the negative real-axis including the origin, 0 .

Further Pure Maths 2

8 We have transformation T given by $w=\frac{2}{\mathrm{i}-2 z}, z \neq \frac{\mathrm{i}}{2}$
a i Rearrange the transformation to get an expression for z :

$$
\begin{aligned}
& w=\frac{2}{\mathrm{i}-2 z} \\
& w(\mathrm{i}-2 z)=2 \\
& \mathrm{i}-2 z=\frac{2}{w} \\
& 2 z=\mathrm{i}-\frac{2}{w} \\
& z=\frac{\mathrm{i}}{2}-\frac{1}{w}=\frac{\mathrm{i} w-2}{2 w}
\end{aligned}
$$

Therefore we can write $|z|=\left|\frac{\mathrm{i} w-2}{2 w}\right|$.
Since $|z|=1$ we have that:
$\left|\frac{i w-2}{2 w}\right|=1$
$|\mathrm{i} w-2|=|2 w|$
$|\mathrm{i}||w+2 \mathrm{i}|=2|w|$
$|w+2 \mathrm{i}|=2|w|$
Write $w=u+\mathrm{i} v$, substitute into the equation and square both sides:
$|u+\mathrm{i} v+2 \mathrm{i}|=2|u+\mathrm{i} v|$
$|u+\mathrm{i} v+2 \mathrm{i}|^{2}=4|u+\mathrm{iv}|^{2}$
$u^{2}+(v+2)^{2}=4 u^{2}+4 v^{2}$
$3 u^{2}+3 v^{2}-4 v-4=0$
$u^{2}+v^{2}-\frac{4}{3} v-\frac{4}{3}=0$
Complete the square for v
$u^{2}+\left(v-\frac{2}{3}\right)^{2}=\frac{16}{9}$, which is the equation of a circle
ii Since $u^{2}+\left(v-\frac{2}{3}\right)^{2}=\frac{16}{9}$, the circle is centred at $\left(0, \frac{2}{3}\right)$ and has radius $r=\frac{4}{3}$

Further Pure Maths 2

$8 \mathbf{b}$ We showed that the region $|z|=1$ is mapped to a circle centred at $\left(0, \frac{2}{3}\right)$ with radius $r=\frac{4}{3}$
Thus $|z| \leqslant 1$ will be either a circle and its interior, or a circle and its exterior.
The easiest way to check that is to pick a point inside the circle $|z| \leqslant 1$ and see where it maps to.
Pick $z_{0}=0$ (for example). Then $w_{0}=\frac{2}{\mathrm{i}}=-2 \mathrm{i}$. This lies outside of the circle centred at $\left(0, \frac{2}{3}\right)$ with radius $r=\frac{4}{3}$, so we see that the region $|z| \leqslant 1$ will be mapped to:

9 We want to show that the transformation T given by $w=\frac{1}{2-z}, z \neq 2$ transforms the circle centred at O, radius $2,|z|=2$ to a line. First, rearrange T to obtain an expression for z :

$$
\begin{aligned}
& w(2-z)=1 \\
& 2-z=\frac{1}{w} \\
& z=2-\frac{1}{w} \\
& z=\frac{2 w-1}{w}
\end{aligned}
$$

As $|z|=2$, we can write:
$2=\frac{|2 w-1|}{|w|}$
$2|w|=|2 w-1|$
$|w|=\left|w-\frac{1}{2}\right|$
This equation represents points on the perpendicular bisector of the line segment joining $(0,0)$ and $\left(\frac{1}{2}, 0\right)$. Therefore the line l has equation $u=\frac{1}{4}$:

Further Pure Maths 2

$\mathbf{1 0}$ We know that the transformation T is given by $w=\frac{z-\mathrm{i}}{z+\mathrm{i}}, z \neq-\mathrm{i}$
a We want to show that the circle $|z-\mathrm{i}|=1$ in z-plane is mapped to a circle in w-plane.
Begin by rearranging the transformation to obtain an expression for z :

$$
\begin{aligned}
& w(z+\mathrm{i})=z-\mathrm{i} \\
& w z+\mathrm{i} w=z-\mathrm{i} \\
& \mathrm{z}(1-w)=\mathrm{i}(w+1) \\
& z=\frac{\mathrm{i} w+\mathrm{i}}{1-w}
\end{aligned}
$$

We know that $|z-\mathrm{i}|=1$, so subtract i from both sides:

$$
\begin{aligned}
& z-\mathrm{i}=\frac{\mathrm{i} w+\mathrm{i}}{1-w}-\mathrm{i} \\
& z-\mathrm{i}=\frac{2 \mathrm{i} w}{1-w}
\end{aligned}
$$

Use $|z-\mathrm{i}|=1$:
$1=\frac{|2 \mathrm{i} w|}{|1-w|}$
$|1-w|=2|w|$
Write $w=u+\mathrm{i} v$ and square both sides of the equation:

$$
\begin{aligned}
& |1-u-\mathrm{i} v|^{2}=4|u+\mathrm{i} v|^{2} \\
& (1-u)^{2}+v^{2}=4 u^{2}+4 v^{2} \\
& 1-2 u+u^{2}=4 u^{2}+3 v^{2} \\
& 3 u^{2}+2 u+3 v^{2}-1=0 \\
& u^{2}+\frac{2}{3} u+v^{2}-\frac{1}{3}=0
\end{aligned}
$$

Complete the square
$u^{2}+\frac{2}{3} u+v^{2}-\frac{1}{3}=0$
$\left(u+\frac{1}{3}\right)^{2}+v^{2}=\frac{4}{9}$
Which represents a circle centred $\left(-\frac{1}{3}, 0\right)$, radius $r=\frac{2}{3}$ in the w-plane.
b

$11 T: w=\frac{3}{2-z}, z \neq 2$
$\Rightarrow w(2-z)=3$
$\Rightarrow 2 w-w z=3$
$\Rightarrow 2 w=3+w z$
$\Rightarrow 2 w-3=w z$
$\Rightarrow \frac{2 w-3}{w}=z$
$\Rightarrow z=\frac{2 w-3}{w}$
$\Rightarrow z=\frac{2(u+\mathrm{i} v)-3}{u+\mathrm{i} v}$
$\Rightarrow z=\frac{(2 u-3)+2 \mathrm{i} v}{u+\mathrm{i} v}$
$\Rightarrow z=\frac{[(2 u-3)+2 \mathrm{i} v]}{u+\mathrm{i} v} \times \frac{[u-\mathrm{i} v]}{[u-\mathrm{i} v]}$
$\Rightarrow z=\frac{(2 u-3) u-\mathrm{i} v(2 u-3)+2 \mathrm{i} u v+2 v^{2}}{u^{2}+v^{2}}$
$\Rightarrow z=\frac{2 u^{2}-3 u-2 n v i+3 \mathrm{i} v+2 n v i+2 v^{2}}{u^{2}+v^{2}}$
$\Rightarrow z=\frac{2 u^{2}-3 u+2 v^{2}}{u^{2}+v^{2}}+\mathrm{i}\left[\frac{3 v}{u^{2}+v^{2}}\right]$
So, $x+\mathrm{i} y=\frac{2 u^{2}-3 u+2 v^{2}}{u^{2}+v^{2}}+\mathrm{i}\left[\frac{3 v}{u^{2}+v^{2}}\right]$
$\Rightarrow x=\frac{2 u^{2}-3 u+2 v^{2}}{u^{2}+v^{2}}$
and $y=\frac{3 v}{u^{2}+v^{2}}$

11 (continued)

$$
\text { As, } \begin{aligned}
2 y=x & \Rightarrow 2\left(\frac{3 v}{u^{2}+v^{2}}\right)=\frac{2 u^{2}-3 u+2 v^{2}}{u^{2}+v^{2}} \\
& \Rightarrow \frac{6 v}{u^{2}+v^{2}}=\frac{2 u^{2}-3 u+2 v^{2}}{u^{2}+v^{2}} \\
& \Rightarrow 6 v=2 u^{2}-3 u+2 v^{2} \\
& \Rightarrow 0=2 u^{2}-3 u+2 v^{2}-6 v \\
& \Rightarrow 2 u^{2}-3 u+2 v^{2}-6 v=0 \quad(\div 2) \\
& \Rightarrow u^{2}-\frac{3}{2} u+v^{2}-3 v=0 \\
& \Rightarrow\left(u-\frac{3}{4}\right)^{2}-\frac{9}{16}+\left(v-\frac{3}{2}\right)^{2}-\frac{9}{4}=0 \\
& \Rightarrow\left(u-\frac{3}{4}\right)^{2}+\left(v-\frac{3}{2}\right)^{2}=\frac{9}{16}+\frac{9}{4} \\
& \Rightarrow\left(u-\frac{3}{4}\right)^{2}+\left(v-\frac{3}{2}\right)^{2}=\frac{45}{16} \\
& \Rightarrow\left(u-\frac{3}{4}\right)^{2}+\left(v-\frac{3}{2}\right)^{2}=\left(\frac{3 \sqrt{5}}{4}\right)^{2}
\end{aligned}
$$

The image under T of $2 y=x$ is a circle centre $\left(\frac{3}{4}, \frac{3}{2}\right)$, radius $\frac{3 \sqrt{5}}{4}$, as required.
$12 T: w=\frac{-\mathrm{i} z+\mathrm{i}}{z+1}, z \neq-1$
a Circle with equation $x^{2}+y^{2}=1 \Rightarrow|z|=1$

$$
\begin{aligned}
& w=\frac{-\mathrm{i} z+\mathrm{i}}{z+1} \\
& \Rightarrow w(z+1)=-\mathrm{i} z+\mathrm{i} \\
& \Rightarrow w z+w=-\mathrm{i} z+\mathrm{i} \\
& \Rightarrow w z+\mathrm{i} z=\mathrm{i}-w \\
& \Rightarrow z(w+\mathrm{i})=\mathrm{i}-w \\
& \Rightarrow z=\frac{\mathrm{i}-w}{w+\mathrm{i}} \\
& \Rightarrow|z|=\left|\frac{\mathrm{i}-w}{w+\mathrm{i}}\right| \\
& \Rightarrow|z|=\frac{|\mathrm{i}-w|}{|w+\mathrm{i}|}
\end{aligned}
$$

$$
\begin{aligned}
\text { Applying }|z|=1 & \Rightarrow 1=\frac{|\mathrm{i}-w|}{|w+\mathrm{i}|} \\
& \Rightarrow|w+\mathrm{i}|=|\mathrm{i}-w| \\
& \Rightarrow|w+\mathrm{i}|=|(-1)(w-\mathrm{i})| \\
& \Rightarrow|w+\mathrm{i}|=|(-1)||(w-\mathrm{i})| \\
& \Rightarrow|w+\mathrm{i}|=|w-\mathrm{i}|
\end{aligned}
$$

The image under T of $x^{2}+y^{2}=1$ is the perpendicular bisector of the line segment joining $(0,-1)$ to $(0,1)$. Therefore the line l has equation $v=0$. (i.e. the u-axis.)
b $|z| \leqslant 1 \Rightarrow 1 \geqslant \frac{|\mathrm{i}-w|}{|w+\mathrm{i}|}$

$$
\begin{aligned}
& \Rightarrow|w+\mathrm{i}| \geqslant|\mathrm{i}-w| \\
& \Rightarrow|w+\mathrm{i}| \geqslant|w-\mathrm{i}|
\end{aligned}
$$

12c Circle with equation $x^{2}+y^{2}=4 \Rightarrow|z|=2$

$$
\begin{aligned}
\text { from part a } & w=\frac{-\mathrm{i} z+\mathrm{i}}{z+1} \\
& \Rightarrow z=\frac{\mathrm{i}-w}{w+\mathrm{i}} \\
& \Rightarrow|z|=\frac{|\mathrm{i}-w|}{|w+\mathrm{i}|} \\
\text { Applying }|z|=2 & \Rightarrow 2=\frac{|\mathrm{i}-w|}{|w+\mathrm{i}|} \\
& \Rightarrow 2|w+\mathrm{i}|=|\mathrm{i}-w| \\
& \Rightarrow 2|w+\mathrm{i}|=|(-1)(w-\mathrm{i})| \\
& \Rightarrow 2|w+\mathrm{i}|=|(-1)||(w-\mathrm{i})| \\
& \Rightarrow 2|w+\mathrm{i}|=|w-\mathrm{i}| \\
& \Rightarrow 2|u+\mathrm{i} v+\mathrm{i}|=|u+\mathrm{i} v-\mathrm{i}| \\
& \Rightarrow 2|u+\mathrm{i}(v+1)|=|u+\mathrm{i}(v-1)| \\
& \Rightarrow 2^{2}|u+\mathrm{i}(v+1)|^{2}=|u+\mathrm{i}(v-1)|^{2} \\
& \Rightarrow 4\left[u^{2}+(v+1)^{2}\right]=u^{2}+(v-1)^{2} \\
& \Rightarrow 4\left[u^{2}+v^{2}+2 v+1\right]=u^{2}+v^{2}-2 v+1 \\
& \Rightarrow 4 u^{2}+4 v^{2}+8 v+4=u^{2}+v^{2}-2 v+1 \\
& \Rightarrow 3 u^{2}+3 v^{2}+10 v+3=0 \\
& \Rightarrow u^{2}+v^{2}+\frac{10}{3} v+1=0 \\
& \Rightarrow u^{2}+\left(v+\frac{5}{3}\right)^{2}-\frac{25}{9}+1=0 \\
& \Rightarrow u^{2}+\left(v+\frac{5}{3}\right)^{2}=\frac{25}{9}-1 \\
& \Rightarrow u^{2}+\left(v+\frac{5}{3}\right)^{2}=\frac{16}{9} \\
& u^{2}+\left(v+\frac{5}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}
\end{aligned}
$$

The image under T of $x^{2}+y^{2}=4$ is a circle C with centre $\left(0,-\frac{5}{3}\right)$, radius $\frac{4}{3}$.
Therefore, the equation of C is $u^{2}+\left(v+\frac{5}{3}\right)^{2}=\frac{16}{9}$.

Further Pure Maths 2

$13 T: w=\frac{4 z-3 \mathrm{i}}{z-1}, z \neq 1$
Circle with equation $|z|=3$

$$
\begin{aligned}
& w=\frac{4 z-3 \mathrm{i}}{z-1}, \\
& \Rightarrow w(z-1)=4 z-3 \mathrm{i} \\
& \Rightarrow w z-w=4 z-3 \mathrm{i} \\
& \Rightarrow w z-4 z=w-3 \mathrm{i} \\
& \Rightarrow z(w-4)=w-3 \mathrm{i} \\
& \Rightarrow z=\frac{w-3 \mathrm{i}}{w-4} \\
& \Rightarrow|z|=\left|\frac{w-3 \mathrm{i}}{w-4}\right|
\end{aligned}
$$

Applying $|z|=3 \Rightarrow 3=\frac{|w-3 \mathrm{i}|}{|w-4|}$

$$
\begin{aligned}
& \Rightarrow 3|w-4|=|w-3 \mathrm{i}| \\
& \Rightarrow 3|u+\mathrm{i} v-4|=|u+\mathrm{i} v-3 \mathrm{i}| \\
& \Rightarrow 3|(u-4)+\mathrm{i} v|=|u+\mathrm{i}(v-3)| \\
& \Rightarrow 3^{2}|(u-4)+\mathrm{i} v|^{2}=|u+\mathrm{i}(v-3)|^{2} \\
& \Rightarrow 9\left[(u-4)^{2}+v^{2}\right]=u^{2}+(v-3)^{2}
\end{aligned}
$$

$$
\Rightarrow 9\left[u^{2}-8 u+16+v^{2}\right]=u^{2}+v^{2}-6 v+9
$$

$$
\Rightarrow 9 u^{2}-72 u+144+9 v^{2}=u^{2}+v^{2}-6 v+9
$$

$$
\Rightarrow 8 u^{2}-72 u+8 v^{2}+6 v+144-9=0
$$

$$
\Rightarrow 8 u^{2}-72 u+8 v^{2}+6 v+135=0
$$

$$
\Rightarrow u^{2}-9 u+v^{2}+\frac{3}{4} v+\frac{135}{8}=0
$$

$$
\Rightarrow\left(u-\frac{9}{2}\right)^{2}-\frac{81}{4}+\left(v+\frac{3}{8}\right)^{2}-\frac{9}{64}+\frac{135}{8}=0
$$

$$
\Rightarrow\left(u-\frac{9}{2}\right)^{2}+\left(v+\frac{3}{8}\right)^{2}=\frac{81}{4}+\frac{9}{64}-\frac{135}{8}
$$

$$
\Rightarrow\left(u-\frac{9}{2}\right)^{2}+\left(v+\frac{3}{8}\right)^{2}=\frac{225}{64}
$$

$$
\Rightarrow\left(u-\frac{9}{2}\right)^{2}+\left(v+\frac{3}{8}\right)^{2}=\left(\frac{15}{8}\right)^{2}
$$

$14 T: w=\frac{1}{z+\mathrm{i}}, z \neq-\mathrm{i}$
a Real axis in the z-plane $\Rightarrow y=0$

$$
\begin{aligned}
& w=\frac{1}{z+\mathrm{i}} \\
& \Rightarrow w(z+\mathrm{i})=1 \\
& \Rightarrow w z+\mathrm{i} w=1 \\
& \Rightarrow w z=1-\mathrm{i} w \\
& \Rightarrow z=\frac{1-\mathrm{i} w}{w} \\
& \Rightarrow z=\frac{1-\mathrm{i}(u+\mathrm{i} v)}{u+\mathrm{i} v} \\
& \Rightarrow z=\frac{1-\mathrm{i} u+v}{u+\mathrm{i} v} \\
& \Rightarrow z=\frac{((1+v)-\mathrm{i} u)}{(u+\mathrm{i} v)} \times \frac{(u-i v)}{u-i v)} \\
& \Rightarrow z=\frac{(1+v) u-\mathrm{i} v(1+v)-\mathrm{i} u^{2}-u v}{u^{2}+v^{2}} \\
& \Rightarrow z=\frac{(1+v) u-u v}{u^{2}+v^{2}}+\frac{\mathrm{i}\left(-v(1+v)-u^{2}\right)}{u^{2}+v^{2}} \\
& \Rightarrow z=\frac{u+u v-u v}{u^{2}+v^{2}}+\frac{\mathrm{i}\left(-v-v^{2}-u^{2}\right)}{u^{2}+v^{2}} \\
& \Rightarrow z=\frac{u}{u^{2}+v^{2}}+\frac{\mathrm{i}\left(-v-v^{2}-u^{2}\right)}{u^{2}+v^{2}} \\
& \text { So } x+\mathrm{i} y=\frac{u}{u^{2}+v^{2}}+\frac{\mathrm{i}\left(-v-v^{2}-u^{2}\right)}{u^{2}+v^{2}} \\
& \Rightarrow x=\frac{u}{u^{2}+v^{2}} a n d y=\frac{-v-v^{2}-u^{2}}{u^{2}+v^{2}} \\
& \text { As } y=0, \frac{-v-v^{2}-u^{2}}{u^{2}+v^{2}}=0 \\
& \Rightarrow-v-v^{2}-u^{2}=0 \\
& \Rightarrow u^{2}+v^{2}+v=0 \\
& \Rightarrow u^{2}+\left(v+\frac{1}{2}\right)^{2}-\frac{1}{4}=0 \\
& \Rightarrow u^{2}+\left(v+\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& \Rightarrow u^{2}+\left(v+\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2} \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

Therefore, the image under T of the real axis in the z-plane is a circle C_{1} with centre $\left(0,-\frac{1}{2}\right)$, radius $\frac{1}{2}$. The equation of C_{1} is $u^{2}+\left(v+\frac{1}{2}\right)^{2}=\frac{1}{4}$.

Further Pure Maths 2

14 b

$$
\begin{aligned}
\text { As } x=4 & \frac{u}{u^{2}+v^{2}}=4 \\
& \Rightarrow u=4\left(u^{2}+v^{2}\right) \\
& \Rightarrow u=4 u^{2}+4 v^{2} \\
& \Rightarrow 0=4 u^{2}-u+4 v^{2} \quad(\div 4) \\
& \Rightarrow 0=u^{2}-\frac{1}{4} u+v^{2} \\
& \Rightarrow 0=\left(u-\frac{1}{8}\right)^{2}-\frac{1}{64}+v^{2} \\
& \Rightarrow\left(u-\frac{1}{8}\right)^{2}+v^{2}=\frac{1}{64} \\
& \Rightarrow\left(u-\frac{1}{8}\right)^{2}+v^{2}=\left(\frac{1}{8}\right)^{2}
\end{aligned}
$$

Therefore, the image under T of the line $x=4$ is a circle C_{2} with centre $\left(\frac{1}{8}, 0\right)$, radius $\frac{1}{8}$.
The equation of C_{2} is $\left(u-\frac{1}{8}\right)^{2}+v^{2}=\frac{1}{64}$.
$15 T: w=z+\frac{4}{z}, z \neq 0$
Circle with equation $|z|=2 \Rightarrow x^{2}+y^{2}=4$

$$
\begin{aligned}
& w=z+\frac{4}{z} \\
& \Rightarrow w=\frac{z^{2}+4}{z} \\
& \Rightarrow w=\frac{(x+\mathrm{i} y)^{2}+4}{x+\mathrm{i} y} \\
& \Rightarrow w=\frac{x^{2}+2 x y \mathrm{i}-y^{2}+4}{x+\mathrm{i} y} \\
& \Rightarrow w=\frac{\left[\left(x^{2}-y^{2}+4\right)+\mathrm{i}(2 x y)\right]}{x+\mathrm{i} y} \\
& \Rightarrow w=\frac{\left[\left(x^{2}-y^{2}+4\right)+\mathrm{i}(2 x y)\right]}{(x+\mathrm{i} y)} \times \frac{(x-\mathrm{i} y)}{(x-\mathrm{i} y)} \\
& \Rightarrow w=\frac{x^{3}-x y^{2}+4 x+2 x y^{2}+\mathrm{i}\left(2 x^{2} y-x^{2} y+y^{3}-4 y\right)}{x^{2}+y^{2}} \\
& \Rightarrow w=\left(\frac{x^{3}+x y^{2}+4 x}{x^{2}+y^{2}}\right)+\mathrm{i}\left(\frac{y^{3}+x^{2} y-4 y}{x^{2}+y^{2}}\right) \\
& \Rightarrow w=\frac{x\left(x^{2}+y^{2}+4\right)}{x^{2}+y^{2}}+\frac{\mathrm{i} y\left(x^{2}+y^{2}-4\right)}{x^{2}+y^{2}} \\
& \text { Apply } x^{2}+y^{2}+4 \Rightarrow w=\frac{x(4+4)}{4}+\frac{\mathrm{i} y(4-4)}{4} \\
& \Rightarrow w=\frac{8 x}{4}+\frac{\mathrm{i} y(0)}{4} \\
& \Rightarrow w=2 x+0 \mathrm{i} \\
& \Rightarrow u+\mathrm{i} v=2 x+0 \mathrm{i} \\
& \Rightarrow u=2 x, v=0
\end{aligned}
$$

As $|z|=2 \Rightarrow-2 \leqslant x \leqslant 2$
So $\quad-4 \leqslant 2 x \leqslant 4$
and $-4 \leqslant u \leqslant 4$
Therefore the transformation T maps the points on a circle $|z|=2$ in the z-plane to points in the interval $[-4,4]$ on the real axis in the w-plane. Hence $k=4$.
$16 T: w=\frac{1}{z+3}, z \neq-3$
Line with equation $2 x-2 y+7=0$ in the z-plane
$w=\frac{1}{z+3}$
$\Rightarrow w(z+3)=1$
$\Rightarrow w z+3 w=1$
$\Rightarrow w z=1-3 w$
$\Rightarrow z=\frac{1-3 w}{w}$
$\Rightarrow z=\frac{1-3(u+\mathrm{i} v)}{u+\mathrm{i} v}$
$\Rightarrow z=\frac{1-3 u-3 \mathrm{i} v}{u+\mathrm{i} v}$
$\Rightarrow z=\frac{[(1-3 u)-(3 v) \mathrm{i}]}{(u+\mathrm{i} v)} \times \frac{(u-\mathrm{i} v)}{(u-\mathrm{i} v)}$
$\Rightarrow z=\frac{(1-3 u) u-3 v^{2}-\mathrm{i} v(1-3 u)-\mathrm{i}(3 u v)}{u^{2}+v^{2}}$
$\Rightarrow z=\frac{u-3 u^{2}-3 v^{2}}{u^{2}+v^{2}}+\frac{\mathrm{i}(-v+3 u v-3 u v)}{u^{2}+v^{2}}$
$\Rightarrow z=\frac{u-3 u^{2}-3 v^{2}}{u^{2}+v^{2}}+\frac{\mathrm{i}(-v)}{u^{2}+v^{2}}$
So, $x+\mathrm{i} y=\frac{u-3 u^{2}-3 v^{2}}{u^{2}+v^{2}}+\frac{\mathrm{i}(-v)}{u^{2}+v^{2}}$
$\Rightarrow x=\frac{u-3 u^{2}-3 v^{2}}{u^{2}+v^{2}}$
and $y=\frac{-v}{u^{2}+v^{2}}$
As $2 x-2 y+7=0$, then
$2\left(\frac{u-3 u^{2}-3 v^{2}}{u^{2}+v^{2}}\right)-2\left(\frac{-v}{u^{2}+v^{2}}\right)+7=0$
$\Rightarrow \frac{2 u-6 u^{2}-6 v^{2}}{u^{2}+v^{2}}+\frac{2 v}{u^{2}+v^{2}}+7=0 \quad\left(\times\left(u^{2}+v^{2}\right)\right)$
$\Rightarrow 2 u-6 u^{2}-6 v^{2}+2 v+7\left(u^{2}+v^{2}\right)=0$
$\Rightarrow 2 u-6 u^{2}-6 v^{2}+2 v+7 u^{2}+7 v^{2}=0$
$\Rightarrow u^{2}+2 u+v^{2}+2 v=0$
$\Rightarrow(u+1)^{2}-1+(v+1)^{2}-1=0$
$\Rightarrow(u+1)^{2}+(v+1)^{2}=2$
$\Rightarrow(u+1)^{2}+(v+1)^{2}=(\sqrt{2})^{2}$

Further Pure Maths 2

16 (continued)

Therefore the transformation T maps the line $2 x-2 y+7=0$ in the z-plane to a circle C with centre $(-1,-1)$, radius $\sqrt{2}$ in the w-plane.

Challenge

We know that the transformation T given by $w=a z+b$ maps points $z_{1}=0, z_{2}=1$ and $z_{3}=1+\mathrm{i}$ to $w_{1}=2 \mathrm{i}, w_{2}=3 \mathrm{i}$ and $w_{3}=-1+3 \mathrm{i}$ respectively.
Substitute z_{1}, w_{1} into T to get $2 \mathrm{i}=b$.
Next, substitute z_{2}, w_{2} and b into T :
$3 \mathrm{i}=a+2 \mathrm{i}$
$a=\mathrm{i}$
Using z_{3}, w_{3} we can check the result (although it is not necessary):
$a z_{3}+b=\mathrm{i}(1+\mathrm{i})+2 \mathrm{i}=\mathrm{i}-1+2 \mathrm{i}=-1+3 \mathrm{i}=w_{3}$
Thus T can be written as $w=\mathrm{i} z+2 \mathrm{i}$

